AN INFANTILE GIANT TEMPOROPARIETAL CYSTIC MASS
Taner Kemal Erdağ, Aslı Çakır Çetin, Yüksel Olgun
Department of Otorhinolaryngology, Dokuz Eylül University, School of Medicine, İzmir-TURKEY

Conclusions
Neuroglial heterotopias of the temporoparietal region are very rare congenital lesions that require multidisciplinary evaluation and management. Neuroglial heterotopy that develops in fetal life may cause serious deformation of calvarial bones. Bone remodelling that develops over time in children who are treated at an early age contributes to cosmetic improvement.

Introduction
Heterotopic brain tissue is a rare congenital condition in which mature brain tissue is located outside the cranial cavity or spinal cord. Displaced neuroglial tissue is the result of abnormal closure of the neural tube. There is no malignant potential. They are generally present at birth or manifest within the first few years of life, but they can be observed in any age group. It remains rare, with reports on neuroglial heterotopic tissue in the scalp, neck, palate, lips and middle ear, while there are fewer descriptions on neuroglial heterotopia involving the temporo-parietal region.

Case report
A 10-day-old female infant was referred to our department with a fetal magnetic resonance imaging report describing a multi-lobulated macro-cystic temporoparietal mass extending to the infratemporal fossa, without a connection to spinal cord and meninges. Physical examination revealed a 10x8 cm, transparent-yellowish coloured, non-pigmented cyst. She had an asymmetrical face such that the right auricle was displaced towards the neck and the right eye was pushed towards the nose. Nevertheless, motor functions of the facial nerve were normal. Doppler ultrasound showed minimal vascularisation in internal septations of the lesion and was reported in favour of cystic hygroma. The patient underwent surgery, and the cystic mass was totally excised. The histopathological examination resulted as neuroglial heterotopy. In the early post-operative period, mild facial dysfunction was detected including slight movement of the mouth and incomplete eye closure under maximal effort. Additionally, the deformity caused by mass compression in the skull became more apparent after the surgery. However, at postoperative third month, facial nerve motor functions recovered completely, previously displaced right eye and auricle took their regular positions, and the misshapen depressed skull improved significantly.

Figure 1. Giant temporoparietal mass on the right side pushing the right eye outward and right ear posteroinferiorly.
Figure 2. Contrast-enhanced axial T1 weighted brain magnetic resonance imaging showing the giant cystic mass
Figure 3. View of the patient in the early postoperative period with mild facial asymmetry
Figure 3. View of the patient at the 3rd month revealing recovery of facial nerve motor functions and a decrease in the depression at the temporoparietal region