Marker- and localization-defined macrophage subsets predict prognosis and platinum response in HGSOCl

Sara Corvigno1, Artur Mezheyeuski6, Joseph W. Carlson1,3, Josefin Fernebro1,2, Elisabeth Åvall-Lundqvist1,4, Charlotte Rolny1, Hanna Dahlstrand*1,5, Arne Östman1*

1Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden; 2Department of Oncology, Karolinska University Hospital, Stockholm, Sweden; 3Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden; 4Department of Oncology and Department of Clinical Experimental Medicine, Linköping University, Linköping, Sweden; 5Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; 6Dept. of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.

* Authors contributed equally

Methods
We analyzed CD11c-, CD80- and CD163-positive cells, in a cohort of high-grade serous ovarian cancer (N=116). IHC analyses were performed on a TMA. For each marker data was collected for density in total tumor, in tumor stroma, in tumor epithelial areas and in perivascular regions.

Results
High stromal CD11c density is associated with OS

Conclusions
We identified outcome-specific associations of two different marker- and localization-defined subsets of CD68-positive cells. The specific association of stromal CD11c cells and perivascular CD80 cells with prognosis and response to treatment, respectively, imply functional differences of these subsets that should be further explored. In general terms, the study illustrates the biomarker potential of composite macrophage metrics, capturing both marker status and intra-tumoral distribution.

I am an M.D. Phd interested in translational researched and focused on the role of miroenvironment in prognosis and response to therapy in serous ovarian cancer.