Novel Oxidative phosphorylation inhibitor IACS-010759 inhibits p38MAPK-NFkB signaling pathways

Yoko Tabe, Haene Yang, Kazumasa Sekihara, Kaori Saitoh, Helen Ma, Vivian Ruvolo, Junichi Imoto, Kazuho Ikeo, Kaoru Mogushi, Masaki Hosoya, Yoshishide Hayashizaki, Yasunari Yamanaka, Takashi Midida, Michael Andreeff, Joseph R. Marszałek, Manina Konopleva

The higher basal metabolic energetic capacity and kinase activation affects sensitivity to OxPhos Inhibition in AML cells.

1. IACS-010759 resistant cells show
 - High baseline expression of mitochondrial metabolism related genes.
 - High baseline level of OxPhos which is further increased by co-culture with MSCs.
2. Hypoxia reduces oxidative metabolism and causes resistance to IACS.
3. IACS-010759 inhibits p38MAPK-NFkB and mTOR signaling in sensitive cells but not in resistant cells.

BACKGROUND

- Acute myeloid leukemia (AML) cells frequently adjust to increased energy/substrate demands under stress conditions in the bone marrow microenvironment.
- MAML cells are highly dependent on oxidative phosphorylation (OxPhos) for survival.
- IACS-010759 is a novel oral nanomolar complex I inhibitor that blocks cellular respiration through inhibition of complex I of the electron transport (Marszałek et al. Nature Medicine, 2018). It is currently in Phase 1 clinical trial in AML (NCT#02882321).

PURPOSE OF THE STUDY

To assess the biomarkers of anti-AML activity of IACS-010759.

MATERIALS

Primary samples:
- 14 primary AML samples.
- 11 sensitive / 3 resistant to IACS-010759

Human AML cell lines:
- OCI-AML3 (sensitive to IACS-010759)
- MOLM13 (resistant to IACS-010759)

Reagents:
- OxPhos (complex I) inhibitor IACS-010759

METHODS

- Cell viability assay
- Western blotting
- Seahorse Extracellular Flux Analysis
- Cap Analysis of Gene Expression (CAGE) sequencing

FUTURE PLAN

- Investigate the promoter-enhancer network associated with IAC-010759 sensitivity.
- Investigate the resistant mechanisms against OxPhos inhibition in the BM microenvironment, focusing on the interactions between AML cells and stromal cells.

Juntendo University Graduate School of Medicine
Yoko Tabe
M.D., Ph.D • Department of Next Generation Hematology
Laboratory Medicine
2-1-1, Hongo, Bunkyo-ku, Tokyo, Japan

E-mail: tabe@juntendo.ac.jp
Phone: 81-3-3813-3111
Web: http://www.juntendo.ac.jp/english/